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Scaling Laws for Geomagnetic Tail
Current Sheet Acceleration

1. INTRODUCTION

Lyons and Speiser 1 have calculated proton accelerations in the electric cross

field of the geomagnetic tail. Although these calculations are fairly extensive, as

the authors comment, there is still a fair amount of unexplored territory as far as

combinations of relevant parameters are concerned. The purpose of this report is

to present considerations of a scaling nature and to show that these considerations

may be profitably utilized to correlate, organize, and verify groups of solutions

with regard to parametric variation.

2. DERIVATION AND DISCUSSION OF GENERAL, SCALING LAWS

Although the equations involved in these calculations are available, it is not

necessary to refer to them to obtain scaling/dimensional information. This latter

canbe accomplished by use oftheBuckingham pi theorem, which is stated here with-

out proof. Details may be found in Langhaar, 2 pp. 18 and 47 ff. The theorem is:

(Received for Publication 16 July 1987)

1. Lyons, L.R., and Speiser, T.W. (1982) Evidence for current sheet accelera-
tion in the geomagnetic tail, J. Geophys. Res. 87:2276.

2. Langhaar, Henry L. (1951) Dimensional Analysis and Theory of Models,
Wiley, New York.

W 1
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If an equation is dimensionally homogeneous, it can be reduced to a relationship

.4. among a complete set of dimensionless products. If the number of input pararn-

eters is n, and the number of fundamental dimensions is r, then the number of

dimensionless products in the set will be p = n - r.

There are eight parameters involved in the solutions of the Lyons and Speiser

equations, B z , BxL, E, e, m, V11 , V±, d. Of these, the first five are equation

parameters, the next two initial conditions, and the last, both. These parameters
1

are:

B z Constant magnetic field normal to tail current sheet.z

SBxL Constant magnetic field in x direction for zI > d.
E Constant electric field normal to B and BxL.

e Particle charge.

m Particle mass.

V11  Initial component of velocity along the magnetic field.

V1  Initial component of velocity normal to the magnetic field.

d Sheet half-thickness in z direction.

Since the number of fundamental units is four (length, mass, time, and charge),

there are at most 8 - 4 = 4 independent dimensionless parameters that may appear

in the solutions for any unknown quantity. These may be formed in a multiplicity

of ways, and we choose, for our purposes, the following:

BxL/Bz; V /V1 ; (V 2( + V2 ) 1 / 2 B /E; m/e E/B 2 d
x Li L z z

The meaning of the first two is clear, and the third is a ratio of initial velocities

to a drift velocity. The last, by multiplication above and below by E, is seen to be

a ratio of kinetic energy of drift, to the drop in potential energy, Ed, across the

half-sheet.

We intend to concentrate our attention on results shown in Figure 8 of Lyons~1
and Speiser, and this figure is reproduced and enlarged in Figure 1. Table 1

lists the parameters characterizing the curves shown in the figure. Using the

above dimensionless groups, we form an expression for UP, the energy increase

that is plotted as ordinate,

U eEd F[(BL/Bz) , (V /V(), (V2 + V2 ) 1 /2 B /E), (m/e E/B 2 d)] (1)

Here, I' is an unspecified function, and, hence, the quantity preceding it may be

chosen arbitrarily, subject only to the restriction that it have the dimensions of

energy.

This general expression for the energy increase allows one to present all

available information on UI in terms of the four dimensionless parameters chosen.

It is possible, and Lyons and Speiser 1 indicate, that UI will not depend on all of

2
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Figure 1. Energy Increase UI Versus Initial Energy Uo, for Five Sets of Input
Parameters (Redrawn From Lyons and Speiser, 1982)

these parameters; that is, the functional dependence may be a constant for some of
them. As we shall see, however, such conclusions may imply further restrictions

on form; and these must all constitute a picture self-consistent and compatible
with actual solutions. From Eq. (1), certain scaling laws are evident. Thus, for
example, if V11 , V. are unchanged; E, Bz, BxI, are multiplied by a; and d by I/a,
then U I remains unchanged. Such a scaling law forms a means of checking the
consistency of solutions. Unfortunately, Lyons and Speiser used only two values
for d, and these did not have the proper ratio to test the law. A second law is the
following: If E is multiplied by a2; B z, BxL' VI , V11 are multiplied by a; and d is
unchanged, then U I is multiplied by a2. Again, there is not, in the present instance,
the proper combination of parameters available to test this. If would be of interest
in future calculations to do so.

3
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Table 1. Parameters Characterizing the Curves
Shown in Figure 1

Curve # E (v/rn) B z (y) E/B z

1 1 x 10 - 3  1.0 1 x 10- 3

2.5 x 10 4  0.25

25 x 10 - 4  1.0 5 x 10 - 4

2.5 x 10 0.5

3 2.5 x 10 1.0 2.5 x I0

4 1.25 x 1 4 1.0 1.25 x 10- 4

2 2.5x 10 4  2.0

5 6.25 x 10, 5  1.0 6.25 x 10- 5

2.5 x 10 4  4.0

BXL 2 0y: d = 1000km: a eject = 50

: . APPLICATION TO DATA OF LYONS AND SPEISER

Lyons and Speiser 1 present some evidence to indicate that UI: (1) is indepen-
- - dent of BxL, and (2) depends not on E and Bz individually, but only the ratio E/B z

This can only be possible if the functional dependence on the group (m/e E/B2d) is

linear, in which case, with BxL/Bz a constant, Eq. (1) becomes

U =m (E/B)2 F [(V 2 + 2 Bz/E, (V /NT (2)

Thus, the above two constraints lead automatically to the further result, that U1

is independent of d. This result is confirmed by their calculations, which show that

UI is close to invariant for a 5:1 change in d.

The second general scaling law, when applied to Eq. (2), becomes: If E is
2 2multiplied by a ; B z V L' V11 multiplied by a; then UI is multiplied by a . Here,

data is available to check the law, and the results of such a comparison are shown

in Figure 2.

The set of points marked "x" scales the two curves marked I and 2 in Figure 1,

for a value of 'a" 2. A value (plotted as abscissa on Figure 2) is chosen for U°

4
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and a corresponding value UI) 2 (second subscript refers to curve number) is read

from the graph of Figure 1. Then, for an initial energy 4U o , the corresponding

value UI) 1 is read from the figure. A is then defined as

UI) 1 - 4UI)2
Ui) 1

If A = 0, the law is confirmed for a = 2. It is seen that these two curves scale

very closely.
For the set of points marked "o", the same procedure is followed, using the

lower two curves, #4 and #5. In this case, there is a systematic departure from

the scaling law, amounting to - 30 percent at the maximum, for an initial energy

U = 0.5keV.

Although allowances must be made for the inaccuracy of reading values from

a graph (the line thickness amounts to some 7 percent of the ordinate value), the

consistently low values of A for the curves 1 and 2 and the higher ones for curves

4 and 5 indicate that a genuine discrepancy exists here. Further, the fact that for

curves l and 2, and 14 values of U0 , in every case, A ; o cannot easily be ex-I 5



plained on a statistical basis. Thus, it is possible that, even for curves 1 and 2,

there is a slight deviation from proper scaling.

To the extent that this scaling law is obeyed, it shows that these curves are

not independent, but can be generated one from the other; and it also provides a

consistency check on the calculations. To the extent that the law is violated, it

shows a lack of consistency in the assumptions on parameter dependence and/or

possible errors in the calculations themselves. Formulas such as Eq. (2) also of-

fer a simple means of constructing empirical formulas to represent the results of

numerical calculations.

Martin 3 has made similar calculations, but with a variation in the x as well as

the z component of the magnetic field. The x-component of the field is still char-

acterized by a single parameter, so that the total number of equation parameters

appearing in a dimensional analysis remains unchanged. However, another initial

coordinate, in the x direction, is now needed to completely specify the initial value

I problem, and this will result, in general, in an additional dimensionless group.

These calculations, contrary to those of Lyons and Speiser, I show substantial var-

iations in U1 with plasma sheet thickness. These calculations are all for a fixed

initial x = xo , and hence, the above derived scaling laws are still valid. We there-

fore conclude that UI will depend not only on the ratio E/B ° (B0 is, here, a con-

stant characterizing the strength of the magnetic field), but must also depend on E

and/or B ° independently. There is not, however, sufficient data to test this law.

Here too, a knowledge of scaling laws would have been advantageous in correlating,

checking internal consistency, and minimizing the number of calculations required

for parametric exploration.

These laws offer a useful adjunct to such calculations of this type as may be

undertaken in the future.

3. Martin, R. J., Jr. (1986) The effect of plasma sheet thickness on ion accelera-
tion near a magnetic neutral line, in Ion Acceleration in the Magnetosphere
and Ionosphere, American Geophysical Union, Washington, D.C., pp. 141-
145.
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